Search results
Results from the WOW.Com Content Network
Several of the C++ Standard Library container types have push_back and pop_back operations with LIFO semantics; additionally, the stack template class adapts existing containers to provide a restricted API with only push/pop operations. PHP has an SplStack class. Java's library contains a Stack class that is a specialization of Vector.
An associative container uses an associative array, map, or dictionary, composed of key-value pairs, such that each key appears at most once in the container. The key is used to find the value, the object, if it is stored in the container. Associative containers are used in programming languages as class templates.
The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque. Each of these containers implements different algorithms for data storage, which means that they have different speed guarantees for different operations: [1] array implements a compile-time non-resizable array.
Another array data type, intended for numerical use (especially to represent vectors and matrices); the C++ standard allows specific optimizations for this intended purpose. According to Josuttis, valarray was badly designed, by people "who left the [C++ standard] committee a long time before the standard was finished", and expression template ...
An abstract stack is a last-in-first-out structure, It is generally defined by three key operations: push, that inserts a data item onto the stack; pop, that removes a data item from it; and peek or top, that accesses a data item on top of the stack without removal.
The Standard Template Library (STL), and the C++ 1998 standard, specifies std::priority_queue as one of the STL container adaptor class templates. However, it does not specify how two elements with same priority should be served, and indeed, common implementations will not return them according to their order in the queue.
The stack is often used to store variables of fixed length local to the currently active functions. Programmers may further choose to explicitly use the stack to store local data of variable length. If a region of memory lies on the thread's stack, that memory is said to have been allocated on the stack, i.e. stack-based memory allocation (SBMA).
The dynamic array approach uses a variant of a dynamic array that can grow from both ends, sometimes called array deques. These array deques have all the properties of a dynamic array, such as constant-time random access , good locality of reference , and inefficient insertion/removal in the middle, with the addition of amortized constant-time ...