Search results
Results from the WOW.Com Content Network
Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]
However, care is needed because some authors [6] take out the factor from (), so that = and hence () = /, which is convenient because then the (hyper-)polarizability may be accurately called the (nonlinear-)susceptibility per molecule, but at the same time inconvenient because of the inconsistency with the usual linear polarisability definition ...
Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters cubed). [1] [2] Polarization density is denoted mathematically by P; [2] in SI units, it is expressed in coulombs per square meter (C/m 2).
High charge and large size of the anion, due to polarizability which is related to the deformability of its electron cloud (i.e. its "softness") An incomplete valence shell electron configuration, due to the noble gas configuration of the cation producing better shielding and less polarizing power, for example Hg 2+ (r+ = 102 pm) is more ...
Confusion may arise from the practice of using the shorter name "molecular polarizability" for both and ′ within literature intended for the respective unit system. The Clausius–Mossotti relation assumes only an induced dipole relevant to its polarizability and is thus inapplicable for substances with a significant permanent dipole .
Molar refractivity, [1] [2], is a measure of the total polarizability of a mole of a substance. For a perfect dielectric which is made of one type of molecule, the molar refractivity is proportional to the polarizability of a single molecule of the substance. For real materials, intermolecular interactions (the effect of the induced dipole ...
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).
Saturate, Aromatic, Resin and Asphaltene (SARA) is an analysis method that divides crude oil components according to their polarizability and polarity. The saturate fraction consists of nonpolar material including linear, branched, and cyclic saturated hydrocarbons ( paraffins ).