enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  3. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces , named after Henri Lebesgue ( Dunford & Schwartz 1958 , III.3), although according to the Bourbaki group ( Bourbaki 1987 ) they were first introduced by Frigyes ...

  4. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  6. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  7. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...

  8. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.

  9. Krylov subspace - Wikipedia

    en.wikipedia.org/wiki/Krylov_subspace

    They try to avoid matrix-matrix operations, but rather multiply vectors by the matrix and work with the resulting vectors. Starting with a vector , one computes , then one multiplies that vector by to find and so on. All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods ...