enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrostatics - Wikipedia

    en.wikipedia.org/wiki/Hydrostatics

    Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium [1] and "the pressure in a fluid or exerted by a fluid on an immersed body". [ 2 ] It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics , the study of fluids in motion.

  3. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid dynamics is a subdiscipline of fluid mechanics that deals with fluid flow—the science of liquids and gases in motion. [4] Fluid dynamics offers a systematic structure—which underlies these practical disciplines —that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems.

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  5. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    Hydrostatics, also known as fluid statics, is the study of fluids at rest (i.e. in static equilibrium). The characteristic of any fluid at rest is that the force exerted on any particle of the fluid is the same at all points at the same depth (or altitude) within the fluid.

  6. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    In fluid mechanics the term static pressure refers to a term in Bernoulli's equation written words as static pressure + dynamic pressure = total pressure. Since pressure measurements at any single point in a fluid always give the static pressure value, the 'static' is often dropped.

  7. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  8. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Three conservation laws are used to solve fluid dynamics problems, and may be written in integral or differential form. The conservation laws may be applied to a region of the flow called a control volume. A control volume is a discrete volume in space through which fluid is assumed to flow.

  9. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different, and can even be time-dependent.