enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse_distribution

    If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b −1,a −1), and the probability density function in this range is =, and is zero elsewhere.

  3. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  5. Reciprocal distribution - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_distribution

    In probability and statistics, the reciprocal distribution, also known as the log-uniform distribution, is a continuous probability distribution. It is characterised by its probability density function , within the support of the distribution, being proportional to the reciprocal of the variable.

  6. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed.

  7. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  8. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  9. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.