Search results
Results from the WOW.Com Content Network
Cr:YAG can be also used as a laser gain medium itself, producing tunable lasers with outputs adjustable between 1350 and 1550 nm. The Cr:YAG laser can generate ultrashort pulses (in the femtoseconds range) when it is pumped at 1064 nm by a Nd:YAG laser. [18] Cr:YAG has been demonstrated in an application of non-linear optics as a self-pumped ...
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y 3 Al 5 O 12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant , neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are ...
Nd:YAP laser (yttrium aluminium perovskite) 1.0646 μm [7] Flashlamp, laser diode: Surgery, tattoo removal, hair removal, research, pumping other lasers (combined with frequency doubling to produce a green 532 nm beam) Nd:Cr:YAG laser 1.064 μm, (1.32 μm) solar radiation: Experimental production of nanopowders. [8] Er:YAG laser: 2.94 μm
Laser rods (from left to right): Ruby, alexandrite, Er:YAG, Nd:YAG. A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. [1] Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called ...
Blue DPSSLs use a nearly identical process, except that the 808 nm light is being converted by an Nd:YAG crystal to 946 nm light (selecting this non-principal spectral line of neodymium in the same Nd-doped crystals), which is then frequency-doubled to 473 nm by a beta barium borate (BBO) crystal or LBO crystal. Because of the lower gain for ...
Er:YAG laser rod. An Er:YAG laser (erbium-doped yttrium aluminium garnet laser, erbium YAG laser) is a solid-state laser whose active laser medium is erbium-doped yttrium aluminium garnet (Er:Y 3 Al 5 O 12). Er:YAG lasers typically emit light with a wavelength of 2940 nm, which is infrared light. [1]
Holmium-chromium-thulium triple-doped yttrium aluminium garnet (Ho:Cr:Tm:YAG, or Ho,Cr,Tm:YAG) is an active laser medium material with high efficiency. It lases at 2080 nm in the infrared and is widely used in military applications, medicine, and meteorology. Single-element thulium-doped YAG (Tm:YAG) lasers operate at 2010 nm. [36]
Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". [8] Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free ...