enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  3. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    A layer in a deep learning model is a structure or network topology in the model's architecture, which takes information from the previous layers and then passes it to the next layer. Layer types [ edit ]

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  7. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow 2.0 introduced many changes, the most significant being TensorFlow eager, which changed the automatic differentiation scheme from the static computational graph to the "Define-by-Run" scheme originally made popular by Chainer and later PyTorch. [32]

  8. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.

  9. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Double Q-learning [23] is an off-policy reinforcement learning algorithm, where a different policy is used for value evaluation than what is used to select the next action. In practice, two separate value functions Q A {\displaystyle Q^{A}} and Q B {\displaystyle Q^{B}} are trained in a mutually symmetric fashion using separate experiences.

  1. Related searches deep learning explained simply easy to draw tutorial youtube videos 88 made

    deep learning layerdeep learning dense layer
    deep learning wikideep learning layer types
    deep learning models