Search results
Results from the WOW.Com Content Network
When used to model enzyme rates in vivo , for example, to model a metabolic pathway, this representation is inadequate because under these conditions product is present. As a result, when building computer models of metabolism [ 1 ] or other enzymatic processes, it is better to use the reversible form of the Michaelis–Menten equation.
The model is used in a variety of biochemical situations other than enzyme-substrate interaction, including antigen–antibody binding, DNA–DNA hybridization, and protein–protein interaction. [ 17 ] [ 18 ] It can be used to characterize a generic biochemical reaction, in the same way that the Langmuir equation can be used to model generic ...
The favoured model for the enzyme–substrate interaction is the induced fit model. [53] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
The Michaelis–Menten Model can be an invaluable tool to understanding enzyme kinetics. According to this model, a plot of the reaction velocity (V 0 ) associated with the concentration [S] of the substrate can then be used to determine values such as V max , initial velocity, and K m (V max /2 or affinity of enzyme to substrate complex).
Enzyme kinetics: Why do some enzymes exhibit faster-than-diffusion kinetics? [13] Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide ...
The classic model for the enzyme-substrate interaction is the induced fit model. [4] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
Enzyme induction is a process in which a molecule (e.g. a drug) induces (i.e. initiates or enhances) the expression of an enzyme. Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works.
Whereas the concept of water activity is widely known and utilized in the applied biosciences, its complement—the protein activity which quantitates protein–protein interactions—is much less familiar to bioscientists as it is more difficult to determine in dilute solutions of proteins; protein activity is also much harder to determine for ...