enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics.Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Matrix formulae to calculate rows and columns of LU factors by recursion are given in the remaining part of Banachiewicz's paper as Eq. (2.3) and (2.4) (see F90 code example). This paper by Banachiewicz contains both derivation of and factors of respectively non-symmetric and symmetric matrices. They are sometimes confused as later publications ...

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead. In R, the chol function gives the Cholesky decomposition.

  5. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's algorithm inherits the local quadratic convergence of Newton's method, except in the case of quadratic factors of multiplicity higher than 1, when convergence to that factor is linear. A particular kind of instability is observed when the polynomial has odd degree and only one real root.

  6. Incomplete Cholesky factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_Cholesky...

    The sparse version for the incomplete Cholesky factorization (the same procedure presented above) implemented in MATLAB can be seen below. Naturally, MATLAB has its own means for dealing with sparse matrixes, but the code below was made explicit for pedagogic purposes.

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  8. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero