Search results
Results from the WOW.Com Content Network
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE).
A galvanic cell's anode is less negative, supplying less energy than thermodynamically possible. A galvanic cell's cathode is less positive, supplying less energy than thermodynamically possible. The overpotential increases with growing current density (or rate), as described by the Tafel equation .
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
At the Zn anode, oxidation takes place (the metal loses electrons). This is represented in the following oxidation half reaction (note that the electrons are on the products side): + + At the Cu cathode, reduction takes place (electrons are accepted).
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
The one that is smaller will be the anode and will undergo oxidation. The cell potential is then calculated as the sum of the reduction potential for the cathode and the oxidation potential for the anode. E° cell = E° red (cathode) – E° red (anode) = E° red (cathode) + E° oxi (anode)
Tafel plot for an anodic process (). The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. [1] The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification.
The cathode supplies electrons to the positively charged cations which flow to it from the electrolyte (even if the cell is galvanic, i.e., when the cathode is positive and therefore would be expected to repel the positively charged cations; this is due to electrode potential relative to the electrolyte solution being different for the anode ...