Search results
Results from the WOW.Com Content Network
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point.
Sum rule in integration; Constant factor rule in integration; Linearity of integration; Arbitrary constant of integration; Cavalieri's quadrature formula; Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign ...
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
Differential equations are an important area of mathematical analysis with many applications in science and engineering. Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. [1] [2]
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley. ISBN 0-471-58884-9. Oldham, Keith B.; Spanier, Jerome (1974). The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Vol. V. Academic Press. ISBN 0-12-525550-0.