Search results
Results from the WOW.Com Content Network
In statistics, bivariate data is data on each of two variables, where each value of one of the variables is paired with a value of the other variable. [1] It is a specific but very common case of multivariate data. The association can be studied via a tabular or graphical display, or via sample statistics which might be used for inference.
Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [1] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously). [1]
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [ 1 ] Given a set of n + 1 data points (
A common special case is bivariate interpolation or two-dimensional interpolation, based on two variables or two dimensions. When the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points (,,, …
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.
A bivariate, multimodal distribution Figure 4. A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution).
Further expanding its scope, "On Bivariate Discrete Weibull Distribution" explores the application of the Discrete Weibull distribution to bivariate data. The paper delves into sophisticated statistical techniques, including maximum likelihood estimation and Bayesian inference, for analyzing bivariate discrete data.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.