enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold (M, g) is said to be homogeneous if for every pair of points x and y in M, there is some isometry f of the Riemannian manifold sending x to y. This can be rephrased in the language of group actions as the requirement that the natural action of the isometry group is transitive.

  3. Spray (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spray_(mathematics)

    In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t →Φ H t (ξ)∈ TM obey the rule Φ H t (λξ)=Φ H λt (ξ) in positive ...

  4. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration, their motion satisfying the geodesic equations.

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In geodesic coordinates, it is easy to check that the geodesics through zero minimize length. The topology on the Riemannian manifold is then given by a distance function d(p,q), namely the infimum of the lengths of piecewise smooth paths between p and q. This distance is realised locally by geodesics, so that in normal coordinates d(0,v ...

  6. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form.

  7. Hopf–Rinow theorem - Wikipedia

    en.wikipedia.org/wiki/Hopf–Rinow_theorem

    Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow , who published it in 1931. [ 1 ] Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces .

  8. Exponential map (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Exponential_map...

    In Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

  9. Conjugate points - Wikipedia

    en.wikipedia.org/wiki/Conjugate_points

    For Riemannian geometries, beyond a conjugate point, the geodesic is no longer locally the shortest path between points, as there are nearby paths that are shorter. This is analogous to the Earth's surface, where the geodesic between two points along a great circle is the shortest route only up to the antipodal point; beyond that, there are ...