Search results
Results from the WOW.Com Content Network
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
In terms of the wedge product, Lagrange's identity can be written () = ().. Hence, it can be seen as a formula which gives the length of the wedge product of two vectors, which is the area of the parallelogram they define, in terms of the dot products of the two vectors, as ‖ ‖ = () = ‖ ‖ ‖ ‖ ().
Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another. In some cases, the inner product coincides with the dot product.
In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.
Vectorization is used in matrix calculus and its applications in establishing e.g., moments of random vectors and matrices, asymptotics, as well as Jacobian and Hessian matrices. [5] It is also used in local sensitivity and statistical diagnostics. [6]
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
In multilinear algebra, a multivector, sometimes called Clifford number or multor, [1] is an element of the exterior algebra Λ(V) of a vector space V.This algebra is graded, associative and alternating, and consists of linear combinations of simple k-vectors [2] (also known as decomposable k-vectors [3] or k-blades) of the form
A subset of a vector space is called a cone if for all real >,.A cone is called pointed if it contains the origin. A cone is convex if and only if +. The intersection of any non-empty family of cones (resp. convex cones) is again a cone (resp. convex cone); the same is true of the union of an increasing (under set inclusion) family of cones (resp. convex cones).