Search results
Results from the WOW.Com Content Network
In part correct, [2] being able to successfully explain refraction, reflection, rectilinear propagation and to a lesser extent diffraction, the theory would fall out of favor in the early nineteenth century, as the wave theory of light amassed new experimental evidence. [3] The modern understanding of light is the concept of wave-particle duality.
In the late 1660s and early 1670s, Isaac Newton expanded Descartes's ideas into a corpuscle theory of light, famously determining that white light was a mix of colours that can be separated into its component parts with a prism. In 1690, Christiaan Huygens proposed a wave theory for light based on suggestions that had been made by Robert Hooke ...
The physicist concentrates his attention on one particular wave: a wave of force, or a wave of velocity or a wave of displacement. His original differential equations may be of the first order and may involve both force and velocity; but by tradition he eliminates one of these variables, obtains a second order differential equation in the other ...
1746 – Leonhard Euler develops the wave theory of light refraction and dispersion; 1747 – William Watson, while experimenting with a Leyden jar, observes that a discharge of static electricity causes electric current to flow and develops the concept of an electrical potential .
Explaining his results by interference of the waves emanating from the two different slits, he deduced that light must propagate as waves. Augustin-Jean Fresnel did more definitive studies and calculations of diffraction, published in 1815 and 1818, and thereby gave great support to the wave theory of light that had been advanced by Christiaan ...
Fermat's principle is most familiar, however, in the case of visible light: it is the link between geometrical optics, which describes certain optical phenomena in terms of rays, and the wave theory of light, which explains the same phenomena on the hypothesis that light consists of waves.
The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between ...
AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these ...