enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  3. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton , [ 1 ] Hamiltonian mechanics replaces (generalized) velocities q ˙ i {\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized) momenta .

  4. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action-angle coordinates are also useful in perturbation theory of Hamiltonian mechanics, especially in determining adiabatic invariants. One of the earliest results from chaos theory , for dynamical stability of integrable dynamical systems under small perturbations, is the KAM theorem , which states that the invariant tori are partially stable.

  5. William Rowan Hamilton - Wikipedia

    en.wikipedia.org/wiki/William_Rowan_Hamilton

    Numerous other concepts and objects in mechanics, such as Hamilton's principle, Hamilton's principal function, the Hamilton–Jacobi equation, Cayley-Hamilton theorem are named after Hamilton. The Hamiltonian is the name of both a function (classical) and an operator (quantum) in physics, and, in a different sense, a term from graph theory.

  6. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system.

  7. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    The Hamilton–Jacobi equation is a formulation of mechanics in which the motion of a particle can be represented as a wave. In this sense, it fulfilled a long-held goal of theoretical physics (dating at least to Johann Bernoulli in the eighteenth century) of finding an analogy between the propagation of light and the motion of a particle.

  8. The Theoretical Minimum - Wikipedia

    en.wikipedia.org/wiki/The_Theoretical_Minimum

    The series presently stands at four books (as of early 2023) covering the first four of six core courses devoted to: classical mechanics, quantum mechanics, special relativity and classical field theory, general relativity, cosmology, and statistical mechanics. Videos for all of these courses are available online.

  9. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    In Hamiltonian mechanics, the Boltzmann equation is often written more generally as ^ [] = [], where L is the Liouville operator (there is an inconsistent definition between the Liouville operator as defined here and the one in the article linked) describing the evolution of a phase space volume and C is the collision operator.