Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
The original Standard Model of particle physics from the 1970s contained 19 fundamental dimensionless constants describing the masses of the particles and the strengths of the electroweak and strong forces. In the 1990s, neutrinos were discovered to have nonzero mass, and a quantity called the vacuum angle was found to be indistinguishable from ...
The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.
Mathematics: √ 2 + 1 ≈ 2.414 213 562 373 095 049, the silver ratio; the ratio of the smaller of the two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice the larger quantity. Mathematics: e ≈ 2.718 281 828 459 045 087, the base of the natural logarithm.
The Mach number (M or Ma), often only Mach, (/ m ɑː k /; German:) is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. [1] [2] It is named after the Austrian physicist and philosopher Ernst Mach. =, where: M is the local Mach number,