Search results
Results from the WOW.Com Content Network
In most seed plants, especially woody types, the endodermis is present in roots but not in stems. The endodermis helps regulate the movement of water, ions and hormones into and out of the vascular system. It may also store starch, be involved in perception of gravity and protect the plant against toxins moving into the vascular system.
"The ground tissue of plants includes all tissues that are neither dermal nor vascular. It can be divided into three types based on the nature of the cell walls. This tissue system is present between the dermal tissue and forms the main bulk of the plant body. Parenchyma cells have thin primary walls and usually remain alive after they become ...
Roots are specialized for the uptake of water, nutrients (including ions for proper function). [12] Similar to the endodermis, the exodermis contains very compact cells and is surrounded by a Casparian band, two features which are used to restrict the flow of water to a symplastic fashion (through the cytoplasm) rather than apoplastic fashion which (through the cell wall) flow through passages ...
One of the main functions of the root cortex is to serve as a storage area for reserve foods. [4] The innermost layer of the cortex in the roots of vascular plants is the endodermis . The endodermis is responsible for storing starch as well as regulating the transport of water, ions and plant hormones.
In a vascular plant, the stele is the central part of the root or stem [1] containing the tissues derived from the procambium. These include vascular tissue , in some cases ground tissue ( pith ) and a pericycle , which, if present, defines the outermost boundary of the stele.
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells, [1] but the established modern preference has long been to classify the epidermis as dermal tissue, [2] whereas parenchyma is classified as ground tissue. [3]
One of these species is allowed to flow from high to low concentration, which yields the entropic energy to drive the transport of the other solute from a low concentration region to a high one. An example is the sodium-calcium exchanger or antiporter , which allows three sodium ions into the cell to transport one calcium out. [ 24 ]