Search results
Results from the WOW.Com Content Network
The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235 Semiperfect numbers
The second column and second row have been filled in with ε, because when an empty sequence is compared with a non-empty sequence, the longest common subsequence is always an empty sequence. LCS ( R 1 , C 1 ) is determined by comparing the first elements in each sequence.
This variation ultimately ends up repeating the number 21322314 ("two 1s, three 2s, two 3s and one 4"). These sequences differ in several notable ways from the look-and-say sequence. Notably, unlike the Conway sequences, a given term of the pea pattern does not uniquely define the preceding term.
Sequence A073502, the magic constant for n × n magic square with prime entries (regarding 1 as a prime) with smallest row sums, is an example of a sequence with offset 3, and A072171, "Number of stars of visual magnitude n." is an example of a sequence with offset −1.
Every nontrivial Fibonacci integer sequence appears (possibly after a shift by a finite number of positions) as one of the rows of the Wythoff array. The Fibonacci sequence itself is the first row, and a shift of the Lucas sequence is the second row. [4] See also Fibonacci integer sequences modulo n.
In fact, every real number can be written as the limit of a sequence of rational numbers (e.g. via its decimal expansion, also see completeness of the real numbers). As another example, π is the limit of the sequence (3, 3.1, 3.14, 3.141, 3.1415, ...), which is
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
For example, a normal 8 × 8 square will always equate to 260 for each row, column, or diagonal. The normal magic constant of order n is n 3 + n / 2 . The largest magic constant of normal magic square which is also a: triangular number is 15 (solve the Diophantine equation x 2 = y 3 + 16y + 16, where y is divisible by 4);