Search results
Results from the WOW.Com Content Network
The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.
The second major reason for the difference in gravity at different latitudes is that the Earth's equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet's center than objects at the poles. The force due to gravitational attraction between two masses (a piece of the ...
The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from the center. That is, the individual gravitational forces exerted on a point at radius r 0 by the elements of the mass outside the radius r 0 cancel each other.
Trojans are bodies located within another body's gravitationally stable Lagrange points: L 4, 60° ahead in its orbit, or L 5, 60° behind in its orbit. [160] Every planet except Mercury and Saturn is known to possess at least 1 trojan. [161] [162] [163] The Jupiter trojan population is roughly equal to that of the asteroid belt. [164]
Because Io is so close to its massive host planet, the moon is subjected to a tremendous gravitational pull as it orbits Jupiter once about every 42 hours, according to the Planetary Society. This ...
Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...
To be retained by a more gravitationally attracting astrophysical object—a planet by a more massive star, a moon by a more massive planet—the less massive body must have an orbit that lies within the gravitational potential represented by the more massive body's Hill sphere.