enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  3. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Starting from (1,1) the hyperbolic sector of unit area ends at (e, 1/e), where e is 2.71828…, according to the development of Leonhard Euler in Introduction to the Analysis of the Infinite (1748). Taking (e, 1/e) as the vertex of rectangle of unit area, and applying again the squeeze that made it from the unit square, yields ( e 2 , e − 2 ...

  4. Hyperbolic growth - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_growth

    Another example of hyperbolic growth can be found in queueing theory: the average waiting time of randomly arriving customers grows hyperbolically as a function of the average load ratio of the server. The singularity in this case occurs when the average amount of work arriving to the server equals the server's processing capacity.

  5. Hyperbolic motion (relativity) - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion_(relativity)

    Each hyperbola is defined by = / and = / (with =, =) in equation . Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity . It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola , as can be seen when graphed on a Minkowski diagram ...

  6. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  7. Pearls in Graph Theory - Wikipedia

    en.wikipedia.org/wiki/Pearls_in_Graph_Theory

    The "pearls" of the title include theorems, proofs, problems, and examples in graph theory.The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph ...

  8. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    Subsets of the theory of hyperbolic groups can be used to give more examples of hyperbolic spaces, for instance the Cayley graph of a small cancellation group. It is also known that the Cayley graphs of certain models of random groups (which is in effect a randomly-generated infinite regular graph) tend to be hyperbolic very often.

  9. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.