enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/Hardy–Weinberg_principle

    There is 1 degree of freedom (degrees of freedom for test for Hardy–Weinberg proportions are # genotypes − # alleles). The 5% significance level for 1 degree of freedom is 3.84, and since the χ 2 value is less than this, the null hypothesis that the population is in Hardy–Weinberg frequencies is not rejected.

  3. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    Let's examine the Hardy–Weinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1. For example, if p=0.7, then q must be 0.3.

  4. Genetic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Genetic_equilibrium

    Genetic equilibrium is the condition of an allele or genotype in a gene pool (such as a population) where the frequency does not change from generation to generation. [1] Genetic equilibrium describes a theoretical state that is the basis for determining whether and in what ways populations may deviate from it.

  5. Haber process - Wikipedia

    en.wikipedia.org/wiki/Haber_process

    The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 2 ] [ 3 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:

  6. Biological thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Biological_thermodynamics

    Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.

  7. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]

  8. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    In a reversible reaction, chemical equilibrium is reached when the rates of the forward and reverse reactions are equal (the principle of dynamic equilibrium) and the concentrations of the reactants and products no longer change. This is demonstrated by, for example, the Haber–Bosch process for combining nitrogen and hydrogen to produce ammonia.

  9. Abiological nitrogen fixation using homogeneous catalysts

    en.wikipedia.org/wiki/Abiological_nitrogen...

    The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts for the same or similar conversions.