Search results
Results from the WOW.Com Content Network
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram. It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line. [1]
Alternatively, one can graph the expressions and see where they intersect with the line given by the inverse Damköhler number to see the solution for conversion. In the plot below, the y-axis is the inverse Damköhler number and the x-axis the conversion. The rule-of-thumb inverse Damköhler numbers have been placed as dashed horizontal lines.
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
Originally, n was held to have an integer value between 1 and 4, which reflected the nature of the transformation in question. In the derivation above, for example, the value of 4 can be said to have contributions from three dimensions of growth and one representing a constant nucleation rate.
where: k 1 is the rate coefficient for the reaction that consumes A and B; k −1 is the rate coefficient for the backwards reaction, which consumes P and Q and produces A and B. The constants k 1 and k −1 are related to the equilibrium coefficient for the reaction (K) by the following relationship (set v=0 in balance):
For example, the transmission coefficient of methane hopping in a gas hydrate from one site to an adjacent empty site is between 0.25 and 0.5. [1] Typically, reactive flux correlation function (RFCF) simulations are performed in order to explicitly calculate κ {\displaystyle \kappa } from the resulting plateau in the RFCF.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.