enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  3. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...

  4. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    The determinant of a tridiagonal matrix A of order n can be computed from a three-term recurrence relation. [4] Write f 1 = |a 1 | = a 1 (i.e., f 1 is the determinant of the 1 by 1 matrix consisting only of a 1), and let

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The second equation follows from the fact that the determinant of a triangular matrix is simply the product of its diagonal entries, and that the determinant of a permutation matrix is equal to (−1) S where S is the number of row exchanges in the decomposition.

  6. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  7. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  8. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.