enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).

  3. Squeeze theorem - Wikipedia

    en.wikipedia.org/wiki/Squeeze_theorem

    Indeed, if a is an endpoint of I, then the above limits are left- or right-hand limits. A similar statement holds for infinite intervals: for example, if I = (0, ∞), then the conclusion holds, taking the limits as x → ∞. This theorem is also valid for sequences. Let (a n), (c n) be two sequences converging to ℓ, and (b n) a sequence.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  5. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    In either case, the value at x = 0 is defined to be the limiting value ⁡:= ⁡ = for all real a ≠ 0 (the limit can be proven using the squeeze theorem). The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π ).

  6. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the sequential limit. Let f : X → Y be a mapping from a topological space X into a Hausdorff space Y, p ∈ X a limit point of X and L ∈ Y.

  7. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  8. Topologist's sine curve - Wikipedia

    en.wikipedia.org/wiki/Topologist's_sine_curve

    Two variants of the topologist's sine curve have other interesting properties. The closed topologist's sine curve can be defined by taking the topologist's sine curve and adding its set of limit points, {(,) [,]}; some texts define the topologist's sine curve itself as this closed version, as they prefer to use the term 'closed topologist's sine curve' to refer to another curve. [1]

  9. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in Xx 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.