enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    It follows that the solutions of such an equation are exactly the zeros of the function . In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.

  5. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where ⁠ ⁠ is its variable, and ⁠ ⁠, ⁠ ⁠, and ⁠ ⁠ are coefficients.The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.

  6. Meyer's theorem - Wikipedia

    en.wikipedia.org/wiki/Meyer's_theorem

    A rational quadratic form in five or more variables represents zero over the field ℚ p of p-adic numbers for all p. Meyer's theorem is the best possible with respect to the number of variables: there are indefinite rational quadratic forms Q in four variables which do not represent zero. One family of examples is given by Q(x 1,x 2,x 3,x 4 ...

  7. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  8. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Quadratic function#Upper bound on the magnitude of the roots; Real-root isolation – Methods for locating real roots of a polynomial; Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomial – Polynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial