enow.com Web Search

Search results

  1. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: where is the probability of the message taken from the message space M, and b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat ...

  3. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    Information gain (decision tree) In information theory and machine learning, information gain is a synonym for Kullback–Leibler divergence; the amount of information gained about a random variable or signal from observing another random variable. However, in the context of decision trees, the term is sometimes used synonymously with mutual ...

  4. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    Information theory. Information theory is the mathematical study of the quantification, storage, and communication of information. The field was established and put on a firm footing by Claude Shannon in the 1940s, [1] though early contributions were made in the 1920s through the works of Harry Nyquist and Ralph Hartley.

  5. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    Kullback–Leibler divergence. In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence[1]), denoted , is a type of statistical distance: a measure of how one reference probability distribution P is different from a second probability distribution Q. [2][3] Mathematically, it is defined as.

  6. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    Mutual information is a measure of the inherent dependence expressed in the joint distribution of and relative to the marginal distribution of and under the assumption of independence. Mutual information therefore measures dependence in the following sense: if and only if and are independent random variables.

  7. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    e. Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory.

  8. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    The violet is the mutual information . In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .