Search results
Results from the WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur.
Under a frequentist hypothesis testing framework, this is done by calculating a test statistic (such as a t-statistic) for the dataset, which has a known theoretical probability distribution if there is no difference (the so called null hypothesis). If the actual value calculated on the sample is sufficiently unlikely to arise under the null ...
The second method involves computing the probability that the deviation from the expected value is as unlikely or more unlikely than the observed value, i.e. from a comparison of the probability density functions. This can create a subtle difference, but in this example yields the same probability of 0.0437.
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true. [1] For example, in an F-test, the null distribution is an F-distribution. [2] Null distribution is a tool scientists often use when conducting experiments.
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...