enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...

  3. Förster resonance energy transfer - Wikipedia

    en.wikipedia.org/wiki/Förster_resonance_energy...

    The applications of fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple in many biological and biophysical fields. FRET can be used as a spectroscopic ruler to measure distance and detect molecular interactions in a number of systems and has applications in biology ...

  4. Electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism

    The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.

  5. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. [1] It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume.

  6. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    In some materials, the electrons are bound to the atomic nuclei and so are not free to move around but the energy required to set them free is low. In these materials, called semiconductors , the conductivity is low at low temperatures but as the temperature is increased the electrons gain more thermal energy and the conductivity increases. [ 27 ]

  7. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).

  8. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).

  9. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    A notable application of visible light is that this type of energy from the Sun powers all life on Earth that either makes or uses oxygen. A changing electromagnetic field which is physically close to currents and charges (see near and far field for a definition of "close") will have a dipole characteristic that is dominated by either a ...

  1. Related searches explain one application of electromagnet energy transfer in nature lab project

    resonance energy transferradiation transfer wiki
    resonance energy transfer diagramradiation transfer equation
    what is radiation transfer