Search results
Results from the WOW.Com Content Network
A variety of basic concepts is used in the study and analysis of logical reasoning. Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions. A proposition is a statement that makes a claim about what is the case.
In order to evaluate these forms, statements are put into logical form. Logical form replaces any sentences or ideas with letters to remove any bias from content and allow one to evaluate the argument without any bias due to its subject matter. [1] Being a valid argument does not necessarily mean the conclusion will be true. It is valid because ...
Logic studies valid forms of inference like modus ponens. Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and ...
Double counting – counting events or occurrences more than once in probabilistic reasoning, which leads to the sum of the probabilities of all cases exceeding unity. Equivocation – using a term with more than one meaning in a statement without specifying which meaning is intended. [21]
Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.
Argumentation theory is the interdisciplinary study of how conclusions can be supported or undermined by premises through logical reasoning. With historical origins in logic , dialectic , and rhetoric , argumentation theory includes the arts and sciences of civil debate, dialogue , conversation , and persuasion .
The logical square, also called square of opposition or square of Apuleius, has its origin in the four marked sentences to be employed in syllogistic reasoning: "Every man is bad," the universal affirmative - The negation of the universal affirmative "Not every man is bad" (or "Some men are not bad") - "Some men are bad," the particular ...
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.