Search results
Results from the WOW.Com Content Network
Animation showing the insertion of several elements into an AVL tree. It includes left, right, left-right and right-left rotations. Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree.
AVL trees and red–black trees are two examples of binary search trees that use the left rotation. A single left rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.
AA tree; AVL tree; Binary search tree; Binary tree; Cartesian tree; Conc-tree list; Left-child right-sibling binary tree; Order statistic tree; Pagoda; Randomized binary search tree; Red–black tree; Rope; Scapegoat tree; Self-balancing binary search tree; Splay tree; T-tree; Tango tree; Threaded binary tree; Top tree; Treap; WAVL tree; Weight ...
One advantage of AVL trees over red–black trees is being more balanced: they have height at most (for a tree with n data items, where is the golden ratio), while red–black trees have larger maximum height, . If a WAVL tree is created using only insertions, without deletions, then it has the same small height bound that an AVL ...
In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.
In computing, a threaded binary tree is a binary tree variant that facilitates traversal in a particular order. An entire binary search tree can be easily traversed in order of the main key, but given only a pointer to a node , finding the node which comes next may be slow or impossible.
An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is then added to every node, recording the maximum upper value among all the intervals from this node down.
All of the red-black tree algorithms that have been proposed are characterized by a worst-case search time bounded by a small constant multiple of log N in a tree of N keys, and the behavior observed in practice is typically that same multiple faster than the worst-case bound, close to the optimal log N nodes examined that would be observed in a perfectly balanced tree.