Search results
Results from the WOW.Com Content Network
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The tensor derivative of a vector field (in three dimensions) is a 9-term second-rank tensor – that is, a 3×3 matrix – but can be denoted simply as , where represents the dyadic product. This quantity is equivalent to the transpose of the Jacobian matrix of the vector field with respect to space.
A vector operator is a differential operator used in vector calculus.Vector operators include: Gradient is a vector operator that operates on a scalar field, producing a vector field.
The result, div F, is a scalar function of x. Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system . However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to ...
The combination of the operator and the exterior derivative d generates the classical operators grad, curl, and div on vector fields in three-dimensional Euclidean space. This works out as follows: d takes a 0-form (a function) to a 1-form, a 1-form to a 2-form, and a 2-form to a 3-form (and takes a 3-form to zero).
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.