Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Baron Siméon Denis Poisson (/ p w ɑː ˈ s ɒ̃ /, [1] US also / ˈ p w ɑː s ɒ n /; French: [si.me.ɔ̃ də.ni pwa.sɔ̃]; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid ...
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
Defined on the real line, the Poisson process can be interpreted as a stochastic process, [49] [127] among other random objects. [ 128 ] [ 129 ] But then it can be defined on the n {\displaystyle n} -dimensional Euclidean space or other mathematical spaces, [ 130 ] where it is often interpreted as a random set or a random counting measure ...
It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occurs may itself be a stochastic process . The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.
Realization of Boolean model with random-radii discs. For statistics in probability theory, the Boolean-Poisson model or simply Boolean model for a random subset of the plane (or higher dimensions, analogously) is one of the simplest and most tractable models in stochastic geometry.