Search results
Results from the WOW.Com Content Network
Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al 2 O 3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and ...
Aluminium oxides or aluminum oxides are a group of inorganic compounds with formulas including aluminium (Al) and oxygen (O). Aluminium(I) oxide ( Al 2 O ) Aluminium(II) oxide ( AlO ) (aluminium monoxide)
Aluminium oxide (data page) 1 language. ... Table of Coefficients of Sellmeier equation; Coefficient: for ordinary wave: for extraordinary wave: B 1: 1.43134930: 1 ...
Aluminium(I) oxide is formed by heating Al and Al 2 O 3 in a vacuum while in the presence of SiO 2 and C, and only by condensing the products. [2] Information is not commonly available on this compound; it is unstable, has complex high-temperature spectra, and is difficult to detect and identify. In reduction, Al 2 O is a major component of ...
Aluminium(II) oxide or aluminium monoxide is a compound of aluminium and oxygen with the chemical formula AlO. It has been detected in the gas phase after explosion of aluminized grenades in the upper atmosphere [ 1 ] [ 2 ] [ 3 ] and in stellar absorption spectra.
Oxygen-balanced iron thermite 2Al + Fe 2 O 3 has theoretical maximum density of 4.175 g/cm 3 an adiabatic burn temperature of 3135 K or 2862 °C or 5183 °F (with phase transitions included, limited by iron, which boils at 3135 K), the aluminum oxide is (briefly) molten and the produced iron is mostly liquid with part of it being in gaseous ...
In a vacuum, AlN decomposes at ~1,800 °C (2,070 K; 3,270 °F). In the air, surface oxidation occurs above 700 °C (973 K; 1,292 °F), and even at room temperature, surface oxide layers of 5–10 nm thickness have been detected. This oxide layer protects the material up to 1,370 °C (1,640 K; 2,500 °F).
Pure cryolite has a melting point of 1009 ± 1 °C (1848°F). With a small percentage of alumina dissolved in it, its melting point drops to about 1000 °C (1832°F). Besides having a relatively low melting point, cryolite is used as an electrolyte because, among other things, it also dissolves alumina well, conducts electricity, dissociates electrolytically at higher voltage than alumina, and ...