enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Delta potential - Wikipedia

    en.wikipedia.org/wiki/Delta_potential

    The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.

  4. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    In his PhD thesis project, Paul Dirac [2] discovered that the equation for the operators in the Heisenberg representation, as it is now called, closely translates to classical equations for the dynamics of certain quantities in the Hamiltonian formalism of classical mechanics, when one expresses them through Poisson brackets, a procedure now ...

  5. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    While the delta rule is similar to the perceptron's update rule, the derivation is different. The perceptron uses the Heaviside step function as the activation function g ( h ) {\displaystyle g(h)} , and that means that g ′ ( h ) {\displaystyle g'(h)} does not exist at zero, and is equal to zero elsewhere, which makes the direct application ...

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    This procedure does increase the number of equations to solve compared to Newton's laws, from 3N to 3N + C, because there are 3N coupled second-order differential equations in the position coordinates and multipliers, plus C constraint equations. However, when solved alongside the position coordinates of the particles, the multipliers can yield ...

  7. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  8. Selection rule - Wikipedia

    en.wikipedia.org/wiki/Selection_rule

    The Laporte rule is a selection rule formally stated as follows: In a centrosymmetric environment, transitions between like atomic orbitals such as s-s, p-p, d-d, or f-f, transitions are forbidden. The Laporte rule (law) applies to electric dipole transitions, so the operator has u symmetry (meaning ungerade, odd).

  9. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In other words, the solution of equation 2, u(x), can be determined by the integration given in equation 3. Although f ( x ) is known, this integration cannot be performed unless G is also known. The problem now lies in finding the Green's function G that satisfies equation 1 .