Search results
Results from the WOW.Com Content Network
Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; Japanese: スーパーカミオカンデ) is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan.
The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) is an electron antineutrino detector at the Kamioka Observatory, an underground neutrino detection facility in Hida, Gifu, The device is situated in a drift mine shaft in the old KamiokaNDE cavity in the Japanese Alps .
A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background ...
The Scattering and Neutrino Detector (SND) at the Large Hadron Collider (LHC), CERN, is an experiment built for the detection of the collider neutrinos. The primary goal of SND is to measure the p+p --> +X process and search for the feebly interacting particles. It will be operational from 2022, during the LHC-Run 3 (2022-2024).
A cascading failure is a failure in a system of interconnected parts in which the failure of one or few parts leads to the failure of other parts, growing progressively as a result of positive feedback. This can occur when a single part fails, increasing the probability that other portions of the system fail.
Following the 1977 suggestion by Mikaélyan and his collaborators of using neutrino detection for nuclear monitoring, [1] [2] little work was pursued regarding implementation of the concept until researchers from the Lawrence Livermore and Sandia National Laboratories constructed a prototype antineutrino detector using 0.64 ton of Gadolinium-doped liquid scintillator and placed it 25 m from ...
Gargamelle was designed for neutrino and antineutrino detection. The source of neutrinos and antineutrinos was a proton beam at an energy of 26 GeV from the PS. The protons were extracted by a magnet and then directed through an appropriate array of quadrupole and dipole magnets, providing the necessary degrees of freedom in position and ...
The principle of the OPERA neutrino velocity experiment was to compare travel time of neutrinos against travel time of light. The neutrinos in the experiment emerged at CERN and flew to the OPERA detector. The researchers divided this distance by the speed of light in vacuum to predict what the neutrino travel time should be.