enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of Java bytecode instructions - Wikipedia

    en.wikipedia.org/wiki/List_of_Java_bytecode...

    push 1L (the number one with type long) onto the stack ldc 12 0001 0010 1: index → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, java.lang.invoke.MethodHandle, or a dynamically-computed constant) onto the stack ldc_w 13 0001 0011 2: indexbyte1, indexbyte2 → value

  3. XOR swap algorithm - Wikipedia

    en.wikipedia.org/wiki/XOR_swap_algorithm

    Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.

  4. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The run-time bit complexity to multiply two n-digit numbers using the algorithm is (⁡ ⁡ ⁡) in big O notation. The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007.

  5. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.

  6. Carry-less product - Wikipedia

    en.wikipedia.org/wiki/Carry-less_product

    So the carry-less product of a and b would be c = 101100011101100 2. For every bit set in the number a, the number b is shifted to the left as many bits as indicated by the position of the bit in a. All these shifted versions are then combined using an exclusive or, instead of the regular addition which would be used for regular long ...

  7. Booth's multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Booth's_multiplication...

    Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    In binary encoding each long number is multiplied by one digit (either 0 or 1), and that is much easier than in decimal, as the product by 0 or 1 is just 0 or the same number. Therefore, the multiplication of two binary numbers comes down to calculating partial products (which are 0 or the first number), shifting them left, and then adding them ...