Search results
Results from the WOW.Com Content Network
[citation needed] The heart rate formula most often used for the Bruce is the Karvonen formula (below). A more accurate formula, offered in a study published in the journal, Medicine & Science in Sports & Exercise, is 206.9 - (0.67 x age) which can also be used to more accurately determine VO2 Max, but may produce significantly different results.
The Karvonen method factors in resting heart rate (HR rest) to calculate target heart rate (THR), using a range of 50–85% intensity: [54] THR = ((HR max − HR rest) × % intensity) + HR rest. Equivalently, THR = (HR reserve × % intensity) + HR rest. Example for someone with a HR max of 180 and a HR rest of 70 (and therefore a HR reserve of ...
S-(+)-Carvone is the principal constituent (60–70%) of the oil from caraway seeds (Carum carvi), [8] which is produced on a scale of about 10 tonnes per year. [3] It also occurs to the extent of about 40–60% in dill seed oil (from Anethum graveolens), and also in mandarin orange peel oil.
When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Schematic of quantities for capstan equation An example of holding capstans and a powered capstan used to raise sails on a tall ship. The capstan equation [ 1 ] or belt friction equation , also known as Euler–Eytelwein formula [ 2 ] (after Leonhard Euler and Johann Albert Eytelwein ), [ 3 ] relates the hold-force to the load-force if a ...
The formula above is obtained by combining the composite Simpson's 1/3 rule with the one consisting of using Simpson's 3/8 rule in the extreme subintervals and Simpson's 1/3 rule in the remaining subintervals. The result is then obtained by taking the mean of the two formulas.
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]
In mathematics, the Stieltjes transformation S ρ (z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula S ρ ( z ) = ∫ I ρ ( t ) d t t − z , z ∈ C ∖ I . {\displaystyle S_{\rho }(z)=\int _{I}{\frac {\rho (t)\,dt}{t-z}},\qquad z\in \mathbb {C} \setminus I.}