Search results
Results from the WOW.Com Content Network
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
An extensive property is a physical quantity whose value is proportional to the size of the system it describes, [8] or to the quantity of matter in the system. For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount.
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd = / = Max Bodenstein: chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2] Damköhler numbers: Da =
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
A physical property is any property of a physical system that is measurable. [1] The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables.