Search results
Results from the WOW.Com Content Network
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
An extensive property is a physical quantity whose value is proportional to the size of the system it describes, [8] or to the quantity of matter in the system. For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount.
chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd = / = Max Bodenstein: chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2] Damköhler numbers: Da =
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
A physical property is any property of a physical system that is measurable. [1] The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables.
This category identifies physical quantities which are necessary defined quantities, measured, manipulated, generally used by physicists, engineers, chemists, etc. Contents Top
Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.