Search results
Results from the WOW.Com Content Network
Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area K {\displaystyle K} of a cyclic quadrilateral whose sides have lengths a , {\displaystyle a,} b , {\displaystyle b,} c , {\displaystyle c ...
one pair of parallel sides – a trapezium (τραπέζιον), divided into isosceles (equal legs) and scalene (unequal) trapezia; no parallel sides – trapezoid (τραπεζοειδή, trapezoeidé, literally 'trapezium-like' (εἶδος means 'resembles'), in the same way as cuboid means 'cube-like' and rhomboid means 'rhombus-like')
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The above formula is known as the shoelace formula or the surveyor's formula. If we locate the vertices in the complex plane and denote them in counterclockwise sequence as a = x A + y A i , b = x B + y B i , and c = x C + y C i , and denote their complex conjugates as a ¯ {\displaystyle {\bar {a}}} , b ¯ {\displaystyle {\bar {b}}} , and c ...
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
An easy formula for these properties is that in any three points in any shape, there is a triangle formed. Triangle ABC (example) has 3 points, and therefore, three angles; angle A, angle B, and angle C. Angle A, B, and C will always, when put together, will form 360 degrees. So, ∠A + ∠B + ∠C = 360°
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.