Search results
Results from the WOW.Com Content Network
Aldosterone stimulates Na + and water reabsorption from the gut, salivary and sweat glands in exchange for K +. Aldosterone stimulates secretion of H + via the H+/ATPase in the intercalated cells of the cortical collecting tubules; Aldosterone upregulates expression of NCC in the distal convoluted tubule chronically and its activity acutely. [18]
nearly every cell in the body increased metabolism 5 Thyroxine: T 4: Amino acid derivative thyroid gland: Thyroid follicular cell / Tyrosine: thyroid hormone receptor: nearly every cell in the body Control carbohydrate, protein and fat metabolism and control physical, mental growth of body 6 Dopamine: DA Amino acid derivative substantia nigra ...
Aldosterone acts on the kidneys to provide active reabsorption of sodium and an associated passive reabsorption of water, as well as the active secretion of potassium in the principal cells of the cortical collecting tubule and active secretion of protons via proton ATPases in the lumenal membrane of the intercalated cells of the collecting tubule.
Angiotensin II stimulates the hypertrophy of renal tubule cells, leading to further sodium reabsorption. In the adrenal cortex , angiotensin II acts to cause the release of aldosterone . Aldosterone acts on the tubules (e.g., the distal convoluted tubules and the cortical collecting ducts ) in the kidneys, causing them to reabsorb more sodium ...
It selectively stimulates secretion of aldosterone. The secretion of aldosterone has a diurnal rhythm. Control of aldosterone release from the adrenal cortex: [citation needed] The role of the renin–angiotensin system: Angiotensin is involved in regulating aldosterone and is the core regulator. Angiotensin II acts synergistically with potassium.
For example, aldosterone functions to raise blood sodium levels and lower blood potassium levels by targeting the kidneys. Specifically, it binds receptors of cells that comprise the distal tubules of the kidneys which then stimulate ion channels to conserve sodium and excrete potassium. [3] Additionally, the ion gradient initiates conservation ...
The mineralocorticoid receptor (or MR, MLR, MCR), also known as the aldosterone receptor or nuclear receptor subfamily 3, group C, member 2, (NR3C2) is a protein that in humans is encoded by the NR3C2 gene that is located on chromosome 4q31.1-31.2. [5] MR is a receptor with equal affinity for mineralocorticoids and glucocorticoids.
The cell membrane aldosterone receptor has shown to increase the activity of the basolateral Na/K ATPase, ENaC sodium channels and ROMK potassium channels of the principal cell in the distal tubule and cortical collecting duct of nephrons (as well as in the large bowel and possibly in sweat glands).