Search results
Results from the WOW.Com Content Network
The human genome codes for 95 non-redundant helicases: 64 RNA helicases and 31 DNA helicases. [2] Many cellular processes, such as DNA replication , transcription , translation , recombination , DNA repair , and ribosome biogenesis involve the separation of nucleic acid strands that necessitates the use of helicases.
DnaC helps the helicase to bind to and to properly accommodate the ssDNA at the 13 bp region; this is accomplished by ATP hydrolysis, after which DnaC is released. Single-strand binding proteins (SSBs) stabilize the single DNA strands in order to maintain the replication bubble. DnaB is a 5'→3' helicase, so it travels on the lagging strand.
Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. [ 5 ] Helicase enzymes generally unwind and separate double-stranded DNA .
Both prokaryotic and eukaryotic DNA use ATP binding and hydrolysis to direct helicase loading and in both cases the helicase is loaded in the inactive form. However, eukaryotic helicases are double hexamers that are loaded onto double stranded DNA whereas bacterial helicases are single hexamers loaded onto single stranded DNA. [156]
The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
DNA-dependent ATPase, abbreviated Dda and also known as Dda helicase and Dda DNA helicase, is the 439-amino acid 49,897-atomic mass unit protein coded by the Dda gene of the bacteriophage T4 phage, a virus that infects enterobacteria.
When Mcm2-7 is first loaded it completely encircles the DNA and helicase activity is inhibited. In S phase, the Mcm2-7 complex interacts with helicase cofactors Cdc45 and GINS to isolate a single DNA strand, unwind the origin, and begin replication down the chromosome. In order to have bidirectional replication, this process happens twice at an ...