Search results
Results from the WOW.Com Content Network
Kelvin-Helmholtz instabilities are visible in the atmospheres of planets and moons, such as in cloud formations on Earth or the Red Spot on Jupiter, and the atmospheres of the Sun and other stars. [1] Spatially developing 2D Kelvin-Helmholtz instability at low Reynolds number. Small perturbations, imposed at the inlet on the tangential velocity ...
The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet.
This is an image, captured in San Francisco, which shows the "ocean wave" like pattern associated with the Kelvin–Helmholtz instability forming in clouds. The Kelvin–Helmholtz instability (KHI) is an application of hydrodynamic stability that can be seen in nature. It occurs when there are two fluids flowing at different velocities.
A curious cloud seen over Smith Mountain looks more like something out of a fairytale than it does real life — and the science behind it is fascinating. What are Kelvin-Helmholtz clouds?
Clouds of the genus nimbostratus tend to bring constant precipitation and low visibility. This cloud type normally forms above 2 kilometres (6,600 ft) [10] from altostratus cloud but tends to thicken into the lower levels during the occurrence of precipitation. The top of a nimbostratus deck is usually in the middle level of the troposphere.
The Met Office said: "Kelvin Helmholtz clouds, or fluctus clouds, are quite rare. "These clouds are more likely to be seen on windy days when there is a difference in density of the air.
Kelvin–Helmholtz instabilities occur when large swirls of plasma travel along the edge of the magnetosphere at different velocities from the magnetosphere, causing the plasma to slip past. This results in magnetic reconnection , and as the magnetic field lines break and reconnect, solar wind particles are able to enter the magnetosphere. [ 14 ]
These clouds are gravitationally unstable, and matter coalesces within them to smaller denser clumps, which then rotate, collapse, and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk ( proplyd ) around the young star.