enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.

  3. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  5. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Constructing the perpendicular bisector from a segment; Finding the midpoint of a segment. Drawing a perpendicular line from a point to a line. Bisecting an angle; Mirroring a point in a line; Constructing a line through a point tangent to a circle; Constructing a circle through 3 noncollinear points; Drawing a line through a given point ...

  6. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    A line that is an angle bisector is equidistant from both of its lines when measuring by the perpendicular. At the point where two bisectors intersect, this point is perpendicularly equidistant from the final angle's forming lines (because they are the same distance from this angles opposite edge), and therefore lies on its angle bisector line.

  7. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Through every pair of points there are two horocycles. The centres of the horocycles are the ideal points of the perpendicular bisector of the line-segment between them. Given any three distinct points, they all lie on either a line, hypercycle, horocycle, or circle. The length of a line-segment is the shortest length between two points.

  8. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    A circle is tangent to a point if it passes through the point, and tangent to a line if they intersect at a single point P or if the line is perpendicular to a radius drawn from the circle's center to P. Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector.

  9. Perpendicular - Wikipedia

    en.wikipedia.org/wiki/Perpendicular

    To make the perpendicular to the line AB through the point P using compass-and-straightedge construction, proceed as follows (see figure left): Step 1 (red): construct a circle with center at P to create points A' and B' on the line AB, which are equidistant from P. Step 2 (green): construct circles centered at A' and B' having equal radius.