Search results
Results from the WOW.Com Content Network
The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). Thus any line through a ...
O. Radko and E. Tsukerman, The Perpendicular Bisector Construction, the Isoptic Point and the Simson Line of a Quadrilateral, Forum Geometricorum 12: 161–189 (2012).
Perpendicular bisector construction of a quadrilateral, on the use of perpendicular bisectors of a quadrilateral's sides to form another quadrilateral Topics referred to by the same term This disambiguation page lists articles associated with the title Perpendicular bisector construction .
The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.
The three perpendicular bisectors meet at the circumcenter. Other sets of lines associated with a triangle are concurrent as well. For example: Any median (which is necessarily a bisector of the triangle's area) is concurrent with two other area bisectors each of which is parallel to a side. [1]
Some very frequently considered segments in a triangle to include the three altitudes (each perpendicularly connecting a side or its extension to the opposite vertex), the three medians (each connecting a side's midpoint to the opposite vertex), the perpendicular bisectors of the sides (perpendicularly connecting the midpoint of a side to one ...
the perpendicular bisectors p a, p b, and p c of the sides (each being the length of a segment perpendicular to one side at its midpoint and reaching to one of the other sides); the lengths of line segments with an endpoint at an arbitrary point P in the plane (for example, the length of the segment from P to vertex A is denoted PA or AP );
To construct the perpendicular bisector of the line segment between two points requires two circles, each centered on an endpoint and passing through the other endpoint (operation 2). The intersection points of these two circles (operation 4) are equidistant from the endpoints. The line through them (operation 1) is the perpendicular bisector.