Search results
Results from the WOW.Com Content Network
The cumene process (cumene-phenol process, Hock process) is an industrial process for synthesizing phenol and acetone from benzene and propylene. The term stems from cumene (isopropyl benzene), the intermediate material during the process.
The oxidation of 2,4,6-tri-tert-butylphenol in the alkaline to the intensely blue-colored phenoxy radical can also occur with potassium ferricyanide. [1] [9] [6] The 2,4,6-tri-tert-butylphenoxy radical forms blue crystals on cooling to -70 °C which are stable at room temperature for several weeks and only gradually turn yellow. [9]
Acetophenone is formed as a byproduct of the cumene process, the industrial route for the synthesis of phenol and acetone.In the Hock rearrangement of isopropylbenzene hydroperoxide, migration of a methyl group rather than the phenyl group gives acetophenone and methanol as a result of an alternate rearrangement of the intermediate:
An excess of phenol is used to ensure full condensation and to limit the formation of byproducts, such as Dianin's compound. BPA is fairly cheap to produce, as the synthesis benefits from a high atom economy and large amounts of both starting materials are available from the cumene process. [7]
Cumene (isopropylbenzene) is an organic compound that contains a benzene ring with an isopropyl substituent. It is a constituent of crude oil and refined fuels. It is a flammable colorless liquid that has a boiling point of 152 °C.
When 1-[14 C]-1-chlorobenzene was subjected to aqueous NaOH at 395 °C, ipso substitution product 1-[14 C]-phenol was formed in 54% yield, while cine substitution product 2-[14 C]-phenol was formed in 43% yield, indicating that an elimination-addition (benzyne) mechanism is predominant, with perhaps a small amount of product from addition ...
Oxidative phenol coupling has been used for the synthesis of alkaloids related to morphine. For instance, the reaction has been employed to transform reticuline derivatives into salutaridine derivatives in a single, presumably biomimetic, step. Yields of reactions of this type tend to be low, however. [13] (11)
Synthesis of cumene hydroperoxide Compounds with allylic and benzylic C−H bonds are especially susceptible to oxygenation. [ 10 ] Such reactivity is exploited industrially on a large scale for the production of phenol by the Cumene process or Hock process for its cumene and cumene hydroperoxide intermediates. [ 11 ]