enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    If the quadratic form takes only non-negative (respectively only non-positive) values, the symmetric matrix is called positive-semidefinite (respectively negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and only if all ...

  3. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    If ρ is separable, it can be written as = In this case, the effect of the partial transposition is trivial: = () = As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite.

  4. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    A function is a valid covariance function if and only if [2] this variance is non-negative for all possible choices of N and weights w 1, ..., w N. A function with this property is called positive semidefinite.

  5. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download as PDF; Printable version; ... In mathematics, positive semidefinite may refer to: Positive semidefinite function ... Cookie statement; Mobile view;

  6. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:

  7. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.

  8. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    If the diagonal elements of D are real and non-negative then it is positive semidefinite, and if the square roots are taken with the (+) sign (i.e. all non-negative), the resulting matrix is the principal root of D. A diagonal matrix may have additional non-diagonal roots if some entries on the diagonal are equal, as exemplified by the identity ...