Search results
Results from the WOW.Com Content Network
The Lineweaver–Burk plot derives from a transformation of the Michaelis–Menten equation, v = V a K m + a {\displaystyle v={\frac {Va}{K_{\mathrm {m} }+a}}} in which the rate v {\displaystyle v} is a function of the substrate concentration a {\displaystyle a} and two parameters V {\displaystyle V} , the limiting rate , and K m {\displaystyle ...
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]
In enzyme kinetics, a secondary plot uses the intercept or slope from several Lineweaver–Burk plots to find additional kinetic constants. [1] [2]For example, when a set of v by [S] curves from an enzyme with a ping–pong mechanism (varying substrate A, fixed substrate B) are plotted in a Lineweaver–Burk plot, a set of parallel lines will be produced.
It forms a loop in the first quadrant with a double point at the origin and asymptote + + =. It is symmetrical about the line y = x {\displaystyle y=x} . As such, the two intersect at the origin and at the point ( 3 a / 2 , 3 a / 2 ) {\displaystyle (3a/2,3a/2)} .
More technically, the abscissa of a point is the signed measure of its projection on the primary axis. Its absolute value is the distance between the projection and the origin of the axis, and its sign is given by the location on the projection relative to the origin (before: negative; after: positive). Similarly, the ordinate of a point is the ...
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.