Search results
Results from the WOW.Com Content Network
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .
It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]
It has similarities with Quasi-Newton methods. Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).
In a quasi-Newton method, such as that due to Davidon, Fletcher and Powell or Broyden–Fletcher–Goldfarb–Shanno (BFGS method) an estimate of the full Hessian is built up numerically using first derivatives only so that after n refinement cycles the method closely approximates to Newton's method in performance. Note that quasi-Newton ...
The line-search method first finds a descent direction along which the objective function will be reduced, and then computes a step size that determines how far should move along that direction. The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either ...
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.
[7]: chpt.11 Newton's method can be combined with line search for an appropriate step size, and it can be mathematically proven to converge quickly. Other efficient algorithms for unconstrained minimization are gradient descent (a special case of steepest descent).
Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation